The Heart Hospital at the Detroit Medical Center has a program called Cardio Team One. Cardiologists and staff are in-house 24 hours a day in order to rapidly treat ST-elevation myocardial infarction (STEMI) patients. We have found that submassive and massive pulmonary embolism (PE) often mimics myocardial infarction (MI). there are some critical patients that present as a medical code, and have elevated troponin and electrocardiogram changes. These patients are directed to the cath lab, with the assumption of acute coronary syndrome (ACS), and yet the coronaries are normal. These patients start to decompensate. They didn’t actually have an MI, but instead had a submassive or massive pulmonary embolism causing severe right ventricular (RV) failure. The majority of patients with non-massive pulmonary embolism can be treated conservatively with anticoagulation. However, 45% of pulmonary embolism patients fall into the massive and submassive category. These patients are hemodynamically unstable, with very low blood pressure, and they are one step away from crashing. Previously, there was no effective treatment for these critically unstable patients. One frequently asked medical board question is, “If a patient comes in with a massive PE, what do you do?” The answer is surgical thrombectomy. However, a literature review revealed that that only one percent of massive and submassive PE patients actually went to surgery, because these patients are so unstable. There had to be an alternative, because massive and submassive PE are so undertreated and have a high mortality rate. If these patients make it to the hospital (the majority die before they make it to the hospital), their mortality rate is 58%. Pulmonary embolism is the third most common cause of death in the country. It is higher than MRSA, AIDS, breast cancer, and pneumonia, all combined. We researched medical literature, made calls throughout the country, and tried to sort out mechanical treatment options. We developed a “clot busters” program to help these patients. Ultimately, we instituted a collaborative effort, with our colleagues in the emergency room, intensive care unit, and interventional radiology. We formatted a program specifically to counteract submassive and massive pulmonary embolisms. We have a universal paging system accessible to everyone in the hospital system. They type in the pager number “PE-DVT” and there is 24-hour coverage by the “Clot Buster” team. If the patient qualifies with hemodynamic instability, the patient is directed to the cath lab. Soon enough, after instituting our program, a patient arrived with severe hypotension, blood pressure 70/40 requiring IV pressors. The angiogram revealed a massive clot. Manual extraction yielded minimal success. Subsequently administration of catheter-mediated tPA with the EKOS catheter (EKOS Corporation) yielded better results. The next day, the patient completely recovered: stable, walking around…it was a pleasant surprise.
The program has been very successful and we have saved hundreds of lives. In southeast Michigan, other competing hospitals have referred critical PE patients from their emergency rooms, because they have no such program. Hospitals from hundreds of miles away call us: “We have this patient post surgery, massive PE, and the patient is unstable.” They helicopter them in. I have been asked by some of these hospitals to develop the same program, and we are in the process of doing so. Our PE program is an important tool to treat unstable PE patients. We want to share our experience. I believe we will reach the phase where all hospitals institute a similar program for these critical patients. Acute PE is the next ST-elevation MI. Many years ago, before the urgency around STEMI existed, there were only a few centers treating STEMIs, and now all the centers do STEMIs. That is the importance of the cath lab; it permits us to do these procedures urgently. There is nowhere else better to treat this aggressive disease. Even our colleagues in interventional radiology don’t have the infrastructure that we have in the cath lab. The cath lab is very unique in that the staff is trained to deal with hemodynamically unstable patients. In the interventional radiology suite, this exists, but it is not as common. The vascular surgeons are also involved, but they are mainly in the operating room. As a result, we feel the ideal place for a PE treatment program to grow is the cath lab. At Detroit Medical Center, we have buy- in from all our departments, because they have seen the results. Our surgeons know that when faced with a post-operative massive PE, to send these patients to the cath lab. They get the lifesaving results instantly. A cancer center nearby has benefited from the success of our program. Cancer patients are at higher risk of having a DVT/PE — when this occurs, they too activate the “clot buster” pager. Wayne State University School of Medicine has given us an IRB approval to continue to research the massive and submassive PE patients. The preliminary data looks outstanding.